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Instability of solitary wave solutions to long-wavelength transverse perturbations
in the generalized Kadomtsev-Petviashvili equation with negative dispersion
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The present paper is a more detailed article of the previously published [Rttes. Rev. Lett.84, 3065
(2000], which discovered the transversely unstable solitary wave solutions of the generalized Kadomtsev-
Petviashvili(GKP) equation with negative dispersion. In addition to detailed explanation of stability analysis
to long-wavelength transverse perturbations, numerical calculation of the GKP equation is carried out here to
study the transverse stability to perturbations of finite wavelength. The numerical results show that there is a
short-wavelength cutoff to the transverse instability. Moreover, we reveal the existence of transversely unstable
solitons.
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I. INTRODUCTION versely stable in the framework of the classical KP equation.
The stability analysis in the framework of the GKP equa-
The discovery of the transversely unstable solitary wav&ion where its nonlinear term is generalized to arbitrary one,
solutions of the generalized Kadomtsev-Petviash@KP)  was first conducted by Bridgd46]. He made the linear sta-
equation with negative dispersion was published in RBf.  bility analysis to transverse perturbations of long wave-
Here we expand on that work and present some additionaéngth, or the small wavenumber. The solitary waves were
results: (i) there is a short-wavelength cutoff to this trans-then found to be at the neutral stability if only the leading-
verse instability and(ii) there exist transversely unstable order effect of the small wavenumber is taken into account.
solitons. Therefore the higher-order effects will determine the stabil-
In the present study, only the negative dispersion case igy.
treated. This case arises for describing any long gravity |t was only a month later that the work of our group,
waves, such as internal waves and water waves with littlgvhich made an asymptotic analysis up to the next-order ef-
surface tension effects. Therefore, this is the universal casect of the small wave number, was publisHédl Then ex-
we often encounter in describing long nonlinear dispersivastence of transversely unstable solitary waves was discov-
waves in fluids. ered. In the present paper, the rigorous analytical procedure
Let us outline the preceding studies concerning the stabiland several numerical examples supporting this fact are pre-
ity of solitary waves in the framework of the Korteweg—de sented. The outline of the present paper is as follows: After
Vries- (KdV-) type and KP-type evolution equations with introducing the features of the solitary wave solutions in Sec.
negative dispersion. First, the one-dimensional stability ofi, the stability analysis is given in Sec. Il where the suffi-
solitary wave solutions, or the stability to perturbations thatcient condition for the transverse instability is derived. In
depend only on the solitary wave’s propagating directionSec. IV, we apply this criterion to some specific solitary
was made by many authof2—8] on the basis of the KdV- wave solutions to show the existence of transversely unstable
type equations of arbitrary nonlinear terms. It was found bysolitary waves. Some solitons are also included among them.
these studies that the solitary wave solutions are onemn Sec. V, numerical results are presented. It is found that
dimensionally stable if the conditio) shown below is there is a short-wavelength cutoff to this transverse instabil-

satisfied. ity. In the last section, some concluding remarks are given.
The transverse stability of the one-dimensionally stable

solitary wave solutions, or the stability to perturbations that

depend on the transverse direction also has been made on the Il. SOLITARY WAVE SOLUTION

basis of the KP-type evolution equations. The first study was

conducted by Kadomtsev and Petviash{8l]. They studied The GKP equation with negative dispersion is

the linear stability of solitary waves with respect to long-

wavelength transverse perturbations in the framework of the

classical KP equation whose nonlinear term is limited to the PA P IAL1PA

quadratic one. It was then found that the solitary waves are Stox ﬁ[f(A)] PV 207 0, (1)
stable to such perturbations in a medium with negative dis-

persion. The same results were later reproduced by Kuz-

netsovet al. [10,11]. The complete linear stability analysis wWhere f(A) is a given smooth function oA that satisfies
without restriction on the wavelength of perturbations wasf(0)=0 andf’(0)=df/dA/,-o=0. We seek a solution of Eq.
also conducted by many authdk2—15, and the results in- (1) that is independent of and approaches zero §s- +o,
dicated stability again. Thus, the solitary waves are transwhere
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E=x-ut, (2) the linear stability analysisy can be put in the following
form:
andv is a positive real parameter. It is represented as
Y.t = exp(\t+igy), 10
A=g(8). 3) &Y.t = p(§expl y) (10
. . s _wheree is a given real constant andis a real or a complex
Eﬁng 's governed by the following boundary-value prob constant which is determined by solving the equationgor
' Note that the solitary wave solution is transversely unstable
dZQ if there exists a localized solution whose possesses the
a2 +f(g) -vg=0 (4 positive real part. Substituting E(LO) into Eq.(7) and then
into Eq. (1) and omitting terms nonlinear with respect o
with the boundary condition we obtain the following linearized equation fe
g(é) —0as¢— xeo. (5) dep d2¢ d? &
. " : U ST+ ——sz—=0. (11
The necessary and sufficient condition for the existence of de "d@ " dé d¢t 2

such nontrivial solution is that there exists a nonzero re

constantyy and a positive read satisfying alrhe boundary condition is

$(é) — 0 asé— £, (12)

9 v,
fo f(g)dg- Ego =0 ©®) Equationg11) and(12) constitute the eigenvalue problem
for ¢ whose eigenvalue is. We will solve this eigenvalue

[4]. For example, iff(g)=g™" (m andn are relatively prime  problem (11) and (12) whoseg satisfies the conditioii8).
andn is odd;g'" is defined to take real valugsuchgy, and  For the sake of analytical convenience, we restrict ourselves
v always exist. Iff(g)=—-g™", suchg, andv exist only when to the case of smalk, or the stability to long-wavelength
m is even. When the above condition is satisfied, thetransverse perturbations. Then, at the leading order, the last
boundary-value problen¥) and (5) possesses a nontrivial term on the left-hand side of E¢L1) can be ignored, and the
solution g that has the following two featuresgi) g(¢) ap-  eigenvalue problen{ll) and (12) possesses the following
proaches zero exponentially ds- +o; (i) g(¢) is an even leading-order steady solution
function of & when the¢ coordinate is transferred appropri-
ately such that its origif=0 corresponds with the point qﬁ—— A=0. (13)
where|g| takes the maximum value. We call this solutipa d¢’

solitary wave solution. This solution(13) will be subject to a slow time development

if the last term on the left-hand side of Ed.1), or the term
IIl. LINEAR STABILITY ANALYSIS TO LONG- of O(¢?) is recovered. In the followings, we investigate the
WAVELENGTH TRANSVERSE PERTURBATIONS asymptotic behavior for smadl under the assumption that its
slow time development is described by the two different time
Let us assume that the functional form ff)) is given  scales 0f0(71) andO(e72). So we expresa as
and the conditiori6) is satisfied. Without loss of generality, a
solution of Eq.(1) can be expressed as N =eNg + 2\, (14)

A=g(d + y&y,1), (7)  The validity of this estimate is confirmed if the following

. . analysis is consistent.
where/(&,y,t) represents perturbations to the solitary wave

solutiong. In prior studie§4—8§], the stability with respect to
perturbations that have no dependence gn (one-
dimensional stability was investigated. According to their First we look for a solution of Eqg11) and(12) whose
studies, the necessary and sufficient condition for the oneappreciable variation occurs i§ of the order of unity
dimensional stability in the Lyapunov sense is to satisfy  [d¢/dé=0O(¢)] (core solution, in a power series of:

A. Core solution

dp >0, ®) ¢c=doo+ ey + %o+ (15
dv
where
whereP is defined by q
i ¢co= d_?' (16)
P= Ef g°d¢. 9)

and the subscripC is attached to discriminate the type of
Here we investigate the transverse stability, or the stabilitysolution(core solutio.
with respect to perturbations that depend not only on&he  Substituting the serieél4) and (15) into Eg. (11) and
direction but also on they direction, of the one- arranging the same-order termsdnwe obtain a series of
dimensionally stable solitary wave solution. Since we makesquations forgc,(n=1,2,..):
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L =G, (n=1,2,..), 1 o?
Cd’Cn n ( ) ( 7) LC=_2+f,(g)—U. (18)
d¢
The inhomogeneous ter@, on the right-hand side of Eq.
whereL ¢ is the linear operator defined by (17) consists of the lower-order solutions. Specifically,
|
—Nig+ag + by (n=1),
G,=1 [* 1(¢ (19)
A f (‘ Niden-1~ Nadpen-2+ Ef ¢Cn—2d§)d§+ a+bé (n=2,3,..),
0 0
[
wherea, andb,, (n=1,2,..) are undetermined constants. *
Now consider the linear inhomogeneous equation. Its M :f gde, (24)

homogeneous part, which is self-adjoint, has the nontrivial
solution dg/d¢ that approaches zero exponentially asrespectively. When the conditiai23) is satisfied, we obtain
§— x. Therefore, for the inhomogeneous equati®d to  the solution of Eq(17) at n=2 that does not diverge expo-
have a solution that does not diverge exponentially asentially asé— +o. However, it never satisfies the boundary
§— £, its inhomogeneous ter@, must satisfy the follow-  condition(12), since we easily find from Eq17) atn=2 that

ing relation(solvability condition: a)cz has the following values a&— +

“ dg 1 AdM M
B d—and§= 0, (20) beolg o= 2w + 2 +(r A+ )G+ &
g
since the left-hand side of Eql7) satisfies[”, (dg/dé) + (bz - Eo)f} : (253

X (Legpcn)dé=0 for any ¢, that does not diverge exponen-

tially as ¢é&— . When the condition(20) is satisfied, the 1l 24
solution of Eq.(17) is expressed as beale = _{_ MdM M +(Fh g + Ao)Go +
o 2dv 4
_ 49 - — Y%
¢Cn_rnd§+¢Cn (n_lazv )! (21) + bz—z f . (25b)

wherer, (n=1,2, ..) is an arbitrary constant a'{ﬁm is the For both quantities to be zero, which are the boundary con-

particular solution of Eq(17). ?2'2%;1 n(qluzs?t ggezé?cr)n;isrsfrgﬁzrstlonal '@ in Egs. (253 and
At n=1, we easily find that, by putting,=b;=0, the ' '
solvability condition(20) is identically satisfied and the so- d
lution of Eq.(17) at n=1 that satisfies the boundary condi- b, = o (26)
tion (12) is obtained:
However, the terms which are independentai Eqgs.(259)
dg dg and(25b) cannot be zero simultaneously, since the difference
b= r1d_§ ‘)‘15- (22 betweendcyls ... and ey .- [OF (\2dM/dv+M/2)/v] is
generally not zero. This situation continues to the higher or-

wheredg/ dv represents the derivative gfwith respect taw ?ekrs..Tthe reasontf?r: SLE)CT inappbrotpriatent?]ss fi.s tthat \évihdid not
for fixed &. It should be noted that, although the solut{@2) ake Into account the balance between the first and the sec-

ond terms on the left-hand side of Ed.1). To achieve the
balance, we need to introduce a shrunk coordinate with re-
spect to& and seek a solution whose variation occurs slowly
in & This solution will be called a far-field solution. By
accomplishing the connection with the core solutis) and

the far-field solution, the solution of E¢L1) that satisfies the
)M, (23) boundary conditior{12) can be constructed. This procedure

will be made from the following subsections. In this subsec-

tion, therefore, we concentrate on obtaining the core solution
wheregy=g(0). P andM are defined by Eq9) and putting aside the boundary conditigh2).

itself does not satisfy the mass balarf¢e¢dé=0, we will
see lateffor after Eq.(48)] that this is automatically satisfied
by taking into account a far-field solution.

At n=2, the solvability conditior(20) is

dP
E)\E‘FP:(%_bz
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Now return to the main analysis. Substituting E86) 0 9 P
into Eq. (23), we get Ha={-Ao =N +2

PR
P
A= i/ . 27
L= *'N dprdo @7

This criterion was obtained first by Kadomtsev and Petvias
vili [9] in the framework of the classical KP equation and _ — —
later by Kuznetsowet al. [10,11]. In the framework of the br2 = Qo €XPKXy) + 0 exp(kXy), (35

GKP equation, Bridgegl6] derived this criterion. However, whereq, andq, are undetermined functions %, and
the real part of\, is zero so that the stability of the solitary

wave solution is not determined at this order. To know the, _ A1 20 N[ 2v
stability, we must proceed to the next order. = 2% (1 Tyt IWEA k=2, V1t IVE (36)

At n=3, the solvability conditior(20) is

) Pr2, (34

h- The homogeneous equati¢dl) has a solution

are both pure imaginary constants.
dp dM r Equation(32) is a linear inhomogeneous equation and its

{ 2dv Aot dv [ag+ (riha + AZ)gO]}MﬁL ( % b3>M homogeneous part has the nontrivial solutions(keXp and

- (29) exp(kX;). For Eq.(32) to have a solution that does not di-

' verge with respect t&;, therefore, its inhomogeneous term
which is obtained by the use of EdL7) atn=1,2 andinte- must Satisfy the f0||owing conditions:
gration by parts. This condition will generally give the non-
zero real part oh,. Thus, the solution is obtained up to the

f *H, exp(- kX)dX,

orders that can determine the stability of the solitary wave 0 <%

solution. The specific values @b and b, which are neces- .

sary for determining the value af,, are given after accom- B X

plishing the connection between the core solution and the 0 Hn exp(= kXpdX; | < ce. (37)
far-field solution. In the next subsection, the far-field solution

is investigated. These conditions arise because the left-hand side of

Eq. (32 satisfies [[5~ exp(—kXy)(Lgpen)dX,| <o and
1157 exp(=kXy) (L per)dXq| <o for any boundedpe,.

We seek a solution considering the balance between the The conditiong37) at n=3 become
first and second terms on the left-hand side of &4). To
this end, in accordance with the introductionsaf, ands?\,
in EqQ. (14), we here introduce two shrunk coordinates wit

B. Far-field solution

de _ o 3% ) e
h (2Uk - )\1)dX2 - )\2kq2 - O, (2Uk )\1)dX2 )\quz =0.

respect tot: (39)
— — .2
Xi=eg Xp=etE (29) Solving these equations, we get

We then look for the solution of E¢11) whose appreciable ok
variation occurs inX; and X, of the order of unity Op = Cps ex%;)(Z),
[0l 9X,=0(), dpl X,=0O()], in a power series of: 2vk=\g

br = 82 Pra(Xy, Xo) + 83pra(Xy, Xp) + -+, (30) K
where the subscrigf is attached to discriminate the type of 02 = Co+ exp( = Xz) for X;,X; >0, (393
solution(far-field solution. The series of Eq.30) starts from 2vk =Ny
O(g?) in accordance with the core solution not being able to
satisfy the boundary condition as— +o from this order _ '{ Aok X >
[see the statement below E@6)]. Go = Co- &R 5 = N2

Substituting Eqs(14), (29), and (30) into Eq. (11), and
arranging the same-order termseina series of equations for N
¢rn (N=2,3,..) is obtained: 0p=Cyp- exp( =2 xz) for X;,X, <0, (39b)
Lrdr2=0, (3D 20k =Ny
wherec,, C,., C,-, andc,_ are undetermined constants. We
Leden=H, (n=3,4,..), (32)  can proceed to the higher orders in a similar way.

whereL is the linear operator defined by
J # 1
L= M& Tue Ty (33 Here we carry out the connection of the core solutign

8 1 and the far-field solutiom. In the core region expressed by

andH, (n=3,4,..) is the inhomogeneous term given by  ¢c, the ordering of the far-field solution is reshuffled. That

C. Connection of the core solution and the far-field solution
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is, the far-field solutionpg, is expanded in the power series conditions from the terms independent §fand the other

of X; (or £&) and X, (or £2¢): two from those proportional t@. The latter two relations
2/ 2 contribute to the determination of the unknown constants at
+ 9%en 2| & ¥ ben + Iben this order, and they are given by
= (¢gn)o + & +¢? 2 £
X4 2\ X1 /o IXs /o )
1) N[ AN{dM M r
+eo (40) ol 2w ta TGt a |~ 50
where the quantities in the parentheses with subscript O, or NTIY
(-++)o, are evaluated aX;=X,=0. With this reordering, - Zld_ +by( =kcy, + kc2+, (469
5¢F2>
— .2 + 3 + 4 4+ e+ 3 (
b= eN(Pra)o+ e (Pr3)o + & (dra)o 3 %, 1{)\1{ )\sz M M g +a} rlg
- 1M1 2/490 2 [~ 540
g( ﬁ(,b;:g) 8 §2< &2(;5,:2) + g( 07¢F2> v\ v 2 dU 4 2
+—=—+ =kc,_+Kkc,_.
+oeee, (41) 4 dU 3 CQ 2

Collecting the same orders af, we obtain the reordered Moreover, from the boundary conditiaii2), we get, using
form (say, ¢*Fn) of ¢g,. For example, the new forrfor d,*FS) Eq. (35) and th_e fact that the sign of the exponents in Egs.
of ¢ at the order ofe® is given by (¢es)ot+ E(ddesl 9Xy)o. (399 and(39b) is the same as that o,
After this reordering, we compare the forms of the two so- = _

X * . X +=Cpu= >0,
lutions ¢, and ¢, at eachn and carry out their connection C2+ = G2 = 0 whenh, >0 (479
from n=2. The connection is accomplished if the conditions

~ ppnasE— 1o, 42 - : o
Pon~ P aSE— £ (42) The six undetermined constards, bs, C,4, Cy4, Co, and
are satisfied with differences being smaller than any inverse,_ are determined by the six equatioté4a and (44by);

C,_=C,_=0 when\, < 0. (47b)

power of &. (469 and(46b); and(47a or (47b). Solving these equations,
At the order ofe?, since ¢r,= ()0, the connection is  we get
accomplished if 9
A2dM M A dM
bco ~ (Proos ASE— 0, (433 aZ:_EE___(rlM-H\Z)gO’ bs = 2g°+ZE’
dcr~ (Pr2)o- asé — — 0, (43b) Cpe=Cpe =0,
where the quantities in the parentheses with subscript 0+ and
0- are evaluated aX;,X,— 0+ and X;,X,—0-, respec- 20\ k( ,dM M)\ 1dM
tively. Then, the connection conditiori$3a and (43b) are, C-=|1 +W A\ TGy 5" 2 dv
from Eqgs.(259), (25b), (35), (393, and(39b),
R
ol 2 d a4 (rahg +N2)Go+ @y | = Cou + Cos, Co-= I¥E d 2
(449 1dM]
+—-— | when\, >0,
1{ A2dM } _ 2 dv
—————— —+(rN1+N)go + 8 | =Co-+ Cp-.
vl 2dv 4 MM M LN, MadM
(44b) =S w (riNg+X2)go, b3= 2% 4w
At the order ofe®, since ¢ro=(des)o+ E(dpeal IXy1)o, the
connection conditions are ( 2v )‘1’2[ k( ,dM M) 1dM}
Cor=|1+—F -—|Nj—+ +
IN|? Ydv 2/ 2dv

ey

X, )o+ asé— o, (459

bcs~ (Pra)os + f( B
(1 2 i ) 20w g
o I\4[2 dv 2 2dv |’

C,_=C,_=0 when\, < 0.

deo

5X1>o- as¢é— —ow. (45D

$c3 ~(¢F3)O—+‘f<
They consist of two different kinds of terms, i.e., those inde-
pendent of¢ and those proportional tg. The connection Now one can check that the obtained solution satisfies the
conditions are obtained from each independently, that is, twanass balance up to the order gf or [, (sc,+e2pe,)dé
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FIG. 1. Stability and instability regions on a parameter plane

(p,v) of the solitary wave solutions given k@) Eq. (54), (b) Eq. ] ] ]
(57), (¢) Eq. (58), and(d) Eq. (60). FIG. 2. Time dependence of the maximum amplityeon y
=0 for the solution of the initial-value problem of the GKP equation

(1) whose nonlinear function is given by E2) at (a) p=1, (b)

=0 using Eqs(22), (35), (39, (39b), and(48). p=3. The initial condition is Eq(61) with &= /20 whose solitary
Substituting the above results fag andb; into the solv- |y 5ve solutiong is given by Eq.(54) at (@) p=1 andv=1, (b) p
ability condition (28), we obtain\, as =3 andv=1.
PQ .
+——— if Q<0,
A,=1" 8(dP/dv)? (49) fUU:EiEAml (52
2 1

no solution if Q> 0,
wherep represents

I

Here m and n are relatively primen is odd, andA'" is
defined to take real values. The corresponding solitary wave
solution is

where

(53

m
Q= dv dv n
Thus, whenQ<0, we have a solution of the eigenvalue
problem(11) and(12) whose\ has the positive real pagbr

\,>0). So the solitary wave solution is unstable to long-
wavelength transverse perturbations wiggs 0. - p\f';§ 2lp
g(é) =| Vv sec ,

mm%d<
= —\In

In contrast, wherQ> 0, there is no solution of the eigen- (54)

value problem(11) and (12). In this case any perturbation

modes are expected to be nonlocal. Since nonlocal perturbaherev is a positive real parameter. This solution is one-
tions cannot be excited by the solitary wave solution whichdimensionally stable wherp<4 according to the one-
is local, the solitary wave solution is stable to long- dimensional stability criterior{8). The sufficient condition

wavelength transverse perturbations wiggr 0. for the transverse instability is obtained by applying the in-
Now we can say that a sufficient condition for transversestability criterion(51), which indicates the transverse insta-
instability is bility when
Q<0. (51) 2<p<4. (55

This criterion gives stability for the soliton of the classical The stability region on @-v plane is illustrated in Fig. (&).
KP equation, which is consistent with the results of the pre- Second, consider

vious studieg§12-15. F(A) = (p+ 2)APL+ (p + 1)AZP*L, (56)

where p is given by Eq.(53). There are two families of
IV. TRANSVERSE INSTABILITY OF SPECIFIC SOLITARY solitary wave solutions

WAVE SOLUTIONS

1/p
v
Let us apply the sufficient conditiofs1) for transverse 9(é) =[ Ty cosipon 1] (57)
instability to typical solitary wave solutions. Three different Ve P\v
nonlinear functiond(A) are considered. First, which exists for arbitrary values @h, and another solution

016604-6



INSTABILITY OF SOLITARY WAVE SOLUTIONS TO... PHYSICAL REVIEW E 70, 016604(2004)

T T T T
1F x -
x x
o]
0.8} x  x o
[ x o
X X X o
v x O
0.6} X X XX O O -
o
X x XO
x (o]
04F X X X (o] -
%X X e]
5 XXX X O (o]
t=40 XX XX O O o
0.2F »xxxx O 1
%X 00
..... %00
‘ ! T —,— ) . ] N 1 . 1
12 . _— 0 0.2 0.4 0.6
1 | i | &£

4os N ————

TR FIG. 4. Plots of stabilitfO) and instability(X) on a parameter
plane (e,v) of the solitary wave solution given by E¢54) at p
=3 to transverse perturbations of wave number

side of the smallep) of the one-dimensionally unstable re-
gion.

Finally, we arrange the results f@=1, whose solitary
wave solutions are solitons. There are four kinds of solitons:
FIG. 3. The profiles ofA att=40 and 80 of the solution of the EQs.(54), (57), (58), and(60) at p=1. Their transverse sta-

initial-value problem of the GKP equatio(l) whose nonlinear bilities are shown in Figs.(®-1(d) at p=1. We see that the
function is given by Eq(52) at p=3. The initial condition is Eq.  solitons(54), (57), and(60) are stable while the solito(b8)
(61) with e=7/20 whose solitary wave solutiogis given by Eq. is transversely unstable. This is the first study that has re-

(54) atp=3 andv=1. vealed the existence of transversely unstable soliton propa-
gating in a medium with negative dispersion. The nonlinear

v 1/p function of this unstable soliton is given by E¢6) at p

g(é = , (58 =1. The corresponding soliton solutions are E@s) and

] =
—V1+v coship\vé) +1 (58) at p=1: one is stable and one is unstable.

which exists only whemm is odd. By a trivial scaling trans-

formgtlon, these two _solutlons cover aII_ the solitary wave V. NUMERICAL EXAMPLES
solutions whose nonlinear function is given by any linear
combination of AP*! and A%*! with positive coefficient of In this section we solve the GKP equatid) numerically.

A%P*1 The stability of the solutiong57) and(58) depend not  The purpose is twofold. First, to show examples of trans-
only onp but also orv. The stability regions on the param- verse instability, and second, to investigate the transverse
eter plangp—v plane are shown in Figs.(b) and Xc). One  stability to perturbations of finite wavelength, or finite values
finds that the transversely unstable region adjoins the onesf .

dimensional instability region on the side of the smafidor To these ends, we solve the GKP equatid@nunder the
both cases. following initial condition:
Third, consider
A(x,y,0) =g(x+ 0.1 cosey), (61)
— +1 2p+1

f(A)=(p+ A" = (p+ DA™ 59 wherez is a given real constant. This initial conditigf1)

The corresponding solitary wave solution is represents the solitary wave solution whose peak is distorted
periodically with respect tg by the amplitude 0.1 and wave
o) = v p (60) numbere. The usual finite-difference scheme is used for the

numerical calculation. No disturbanceés=0) and the radia-
tion condition[17] are applied far upstream and downstream,
whereuv is less than 10<v <1). By a trivial scaling trans- respectively, of the finite calculation region moving at speed
formation, this solution covers all the solitary wave solutionsv in the positivex direction, and the condition of symmetry
whose nonlinear function is given by any linear combinationis applied aty=0 and/e.

of AP*! and A%P*! with negative coefficient oA%P*1, The First, take the nonlinear functiof(A) given by Eq.(52)
stability region on the parameter plafe-v plane is shown and the solitary wave solutiog given by Eq.(54), respec-

in Fig. 1(d). In this case also, the transversely unstable regiotively. Figures 2a) and Zb) show the time dependence of the
exists on the side of the lower-order nonlinearities the ~ maximum amplitudeA| on y=0 whene=7/20. We see that

V1 -0 coshpyvé) + 1
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FIG. 5. Time dependence of the maximum amplitgdeon y ‘ x
=0 for the solution of the initial-value problem of the GKP equation i % 1
(1) whose nonlinear function is given by E¢6) at p=1. The 8
initial condition is Eq.(61) with ¢=/20 whose solitary wave so- 0.5F x 7
lution (or the soliton solutiong is given by Eq.(58) at p=1 and % : ©
v=0.5. [ x x x x x g ]
X X X X x
the amplitude grows as time elapses for the cas@=08. oF | , ! \ n
This is in accordance with the analytical req&@5). Figure 3 0.5 1 1.5
shows the whole view of the waver the profile ofA) for E
p=3, and the distortion of the solitary wave can be clearly - ) -
seen. FIG. 7. Plots of stabilityO) and instability(X) on a parameter

plane (e,v) of the soliton solution given by Eq58) at p=1 to

The stability and instability, which are judged by the time )
transverse perturbations of wave number

dependence of the maximum amplitugs on y=0, are

shown in Fig. 4 forp=3 (the case op=1 is always stable

According to the figure, the solitary wave is unstablesas — 0 (the left side of Fig. #independent ob, which agrees
with the analytical resul{55) for small e. However, ase

increases, the solitary wave solution shows stable behavior
from a certain critical value of, or e >¢.(v). That is, there
is a short-wavelength cutoff to the transverse instability.

Next, takef(A) given by Eq.(56) at p=1 andg given by
the soliton solution(58) at p=1. Figure 5 shows the time
dependence of the maximum amplituidé on y=0 whene
=7/20. The figure indicates that the soliton is unstable, and
agrees with the analytical result that the soliton solutte)
at p=1 is transversely unstablgsee Fig. 1c)]. Figure 6
shows the whole view of the waver the profile ofA), and
the distortion of the soliton can be clearly seen. The trans-
verse stability for various values efis arranged in Fig. 7. In
this case also, there is a short-wavelength cutoff to the trans-
verse instability. This tendency is also confirmed in the other
solitary wave solutiong57) and (60) that are transversely
unstable for sufficiently smak.

From the above numerical examples, existence of trans-
versely unstable solitary waves including the solifon the
solution(58) at p=1] has been strongly confirmed. We have
also found that there is a short-wavelength cutoff to the
transverse instability.

VI. CONCLUDING REMARKS

In the present study, the method of the stability analysis
based on the GKP equation has been given fully in detail.
For any solitary wave solutions investigated, there exists a

FIG. 6. The profiles oA att=20 and 40 of the solution of the €gion of transverse instability at the lower-order nonlineari-
initial-value problem of the GKP equatiofl) whose nonlinear ties of the parameter plane than that of the one-dimensional
function is given by Eq(56) at p=1. The initial condition is Eq. instability. This result indicates the importance of checking
(61) with e=/20 whose solitary wave solutiofor the soliton  the transverse stability of one-dimensionally stable solitary
solution) g is given by Eq.(58) at p=1 andv=0.5. waves in fluids like in the water and stratified fluids.
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Although the one-dimensional stability of solitary waves equation, the transverse instability appears at this next order.
in fluids was investigated by several auth¢i8—20, the  Therefore, it is very interesting to make linear stability
transverse stability was studied only by Bridgeéd]. He  analysis on the basis of the original governing equations of
tregted the water waves. He (_Jlerived the linear instability Cri‘fluids, and investigate the transverse stability of one-
terion to transverse perturbations of long wavelength, or theimensionally stable solitary waves in fluids. In fact, the au-

small wave number, and found the neutral stability at thethors made the analysis for the water wave recently and

leading order of the small wave number. To know the Stabil_found the existence of transversely unstable solitary waves
ity, however, the next order effect must be taken into ac- y y :

count. According to our present study based on the GKP e Paper on this finding will be published sof#®].
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