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The present paper is a more detailed article of the previously published Letter[Phys. Rev. Lett.84, 3065
(2000)], which discovered the transversely unstable solitary wave solutions of the generalized Kadomtsev-
Petviashvili(GKP) equation with negative dispersion. In addition to detailed explanation of stability analysis
to long-wavelength transverse perturbations, numerical calculation of the GKP equation is carried out here to
study the transverse stability to perturbations of finite wavelength. The numerical results show that there is a
short-wavelength cutoff to the transverse instability. Moreover, we reveal the existence of transversely unstable
solitons.
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I. INTRODUCTION

The discovery of the transversely unstable solitary wave
solutions of the generalized Kadomtsev-Petviashvili(GKP)
equation with negative dispersion was published in Ref.[1].
Here we expand on that work and present some additional
results:(i) there is a short-wavelength cutoff to this trans-
verse instability and(ii ) there exist transversely unstable
solitons.

In the present study, only the negative dispersion case is
treated. This case arises for describing any long gravity
waves, such as internal waves and water waves with little
surface tension effects. Therefore, this is the universal case
we often encounter in describing long nonlinear dispersive
waves in fluids.

Let us outline the preceding studies concerning the stabil-
ity of solitary waves in the framework of the Korteweg–de
Vries- (KdV-) type and KP-type evolution equations with
negative dispersion. First, the one-dimensional stability of
solitary wave solutions, or the stability to perturbations that
depend only on the solitary wave’s propagating direction
was made by many authors[2–8] on the basis of the KdV-
type equations of arbitrary nonlinear terms. It was found by
these studies that the solitary wave solutions are one-
dimensionally stable if the condition(8) shown below is
satisfied.

The transverse stability of the one-dimensionally stable
solitary wave solutions, or the stability to perturbations that
depend on the transverse direction also has been made on the
basis of the KP-type evolution equations. The first study was
conducted by Kadomtsev and Petviashvili[9]. They studied
the linear stability of solitary waves with respect to long-
wavelength transverse perturbations in the framework of the
classical KP equation whose nonlinear term is limited to the
quadratic one. It was then found that the solitary waves are
stable to such perturbations in a medium with negative dis-
persion. The same results were later reproduced by Kuz-
netsovet al. [10,11]. The complete linear stability analysis
without restriction on the wavelength of perturbations was
also conducted by many authors[12–15], and the results in-
dicated stability again. Thus, the solitary waves are trans-

versely stable in the framework of the classical KP equation.
The stability analysis in the framework of the GKP equa-

tion where its nonlinear term is generalized to arbitrary one,
was first conducted by Bridges[16]. He made the linear sta-
bility analysis to transverse perturbations of long wave-
length, or the small wavenumber. The solitary waves were
then found to be at the neutral stability if only the leading-
order effect of the small wavenumber is taken into account.
Therefore the higher-order effects will determine the stabil-
ity.

It was only a month later that the work of our group,
which made an asymptotic analysis up to the next-order ef-
fect of the small wave number, was published[1]. Then ex-
istence of transversely unstable solitary waves was discov-
ered. In the present paper, the rigorous analytical procedure
and several numerical examples supporting this fact are pre-
sented. The outline of the present paper is as follows: After
introducing the features of the solitary wave solutions in Sec.
II, the stability analysis is given in Sec. III where the suffi-
cient condition for the transverse instability is derived. In
Sec. IV, we apply this criterion to some specific solitary
wave solutions to show the existence of transversely unstable
solitary waves. Some solitons are also included among them.
In Sec. V, numerical results are presented. It is found that
there is a short-wavelength cutoff to this transverse instabil-
ity. In the last section, some concluding remarks are given.

II. SOLITARY WAVE SOLUTION

The GKP equation with negative dispersion is

]2A

]t]x
+

]2

]x2ffsAdg +
]4A

]x4 +
1

2

]2A

]y2 = 0, s1d

where fsAd is a given smooth function ofA that satisfies
fs0d=0 and f8s0d;df /dAuA=0=0. We seek a solution of Eq.
(1) that is independent ofy and approaches zero asj→ ±`,
where
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j = x − vt, s2d

andv is a positive real parameter. It is represented as

A = gsjd. s3d

Then g is governed by the following boundary-value prob-
lem:

d2g

dj2 + fsgd − vg = 0 s4d

with the boundary condition

gsjd → 0 asj → ± `. s5d

The necessary and sufficient condition for the existence of
such nontrivial solution is that there exists a nonzero real
constantg0 and a positive realv satisfying

E
0

g0

fsgddg−
v
2

g0
2 = 0 s6d

[4]. For example, iffsgd=gm/n (m andn are relatively prime
andn is odd;g1/n is defined to take real values), suchg0 and
v always exist. Iffsgd=−gm/n, suchg0 andv exist only when
m is even. When the above condition is satisfied, the
boundary-value problem(4) and (5) possesses a nontrivial
solution g that has the following two features:(i) gsjd ap-
proaches zero exponentially asj→ ±`; (ii ) gsjd is an even
function of j, when thej coordinate is transferred appropri-
ately such that its originj=0 corresponds with the point
whereugu takes the maximum value. We call this solutiong a
solitary wave solution.

III. LINEAR STABILITY ANALYSIS TO LONG-
WAVELENGTH TRANSVERSE PERTURBATIONS

Let us assume that the functional form offsgd is given
and the condition(6) is satisfied. Without loss of generality, a
solution of Eq.(1) can be expressed as

A = gsjd + csj,y,td, s7d

wherecsj ,y,td represents perturbations to the solitary wave
solutiong. In prior studies[4–8], the stability with respect to
perturbations that have no dependence ony (one-
dimensional stability) was investigated. According to their
studies, the necessary and sufficient condition for the one-
dimensional stability in the Lyapunov sense is to satisfy

dP

dv
. 0, s8d

whereP is defined by

P =
1

2
E

−`

`

g2dj. s9d

Here we investigate the transverse stability, or the stability
with respect to perturbations that depend not only on thej
direction but also on they direction, of the one-
dimensionally stable solitary wave solution. Since we make

the linear stability analysis,c can be put in the following
form:

csj,y,td = fsjdexpslt + i«yd, s10d

where« is a given real constant andl is a real or a complex
constant which is determined by solving the equation forf.
Note that the solitary wave solution is transversely unstable
if there exists a localized solution whosel possesses the
positive real part. Substituting Eq.(10) into Eq. (7) and then
into Eq. (1) and omitting terms nonlinear with respect tof,
we obtain the following linearized equation forf:

l
df

dj
− v

d2f

dj2 +
d2

dj2ff8sgdfg +
d4f

dj4 − «2f

2
= 0. s11d

The boundary condition is

fsjd → 0 asj → ± `. s12d

Equations(11) and(12) constitute the eigenvalue problem
for f whose eigenvalue isl. We will solve this eigenvalue
problem (11) and (12) whoseg satisfies the condition(8).
For the sake of analytical convenience, we restrict ourselves
to the case of small«, or the stability to long-wavelength
transverse perturbations. Then, at the leading order, the last
term on the left-hand side of Eq.(11) can be ignored, and the
eigenvalue problem(11) and (12) possesses the following
leading-order steady solution

f =
dg

dj
, l = 0. s13d

This solution(13) will be subject to a slow time development
if the last term on the left-hand side of Eq.(11), or the term
of Os«2d is recovered. In the followings, we investigate the
asymptotic behavior for small« under the assumption that its
slow time development is described by the two different time
scales ofOs«−1d andOs«−2d. So we expressl as

l = «l1 + «2l2. s14d

The validity of this estimate is confirmed if the following
analysis is consistent.

A. Core solution

First we look for a solution of Eqs.(11) and (12) whose
appreciable variation occurs inj of the order of unity
fdf /dj=Osfdg (core solution), in a power series of«:

fC = fC0 + «fC1 + «2fC2 + ¯, s15d

where

fC0 =
dg

dj
, s16d

and the subscriptC is attached to discriminate the type of
solution (core solution).

Substituting the series(14) and (15) into Eq. (11) and
arranging the same-order terms in«, we obtain a series of
equations forfCnsn=1,2, . . .d:
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LCfCn = Gn sn = 1,2, . . .d, s17d

whereLC is the linear operator defined by

LC =
d2

dj2 + f8sgd − v. s18d

The inhomogeneous termGn on the right-hand side of Eq.
(17) consists of the lower-order solutions. Specifically,

Gn = 5 − l1g + a1 + b1j sn = 1d,

E
0

j S− l1fCn−1 − l2fCn−2 +
1

2
E

0

j

fCn−2djDdj + an + bnj sn = 2,3, . . .d,
s19d

wherean andbn sn=1,2, . . .d are undetermined constants.
Now consider the linear inhomogeneous equation(17). Its

homogeneous part, which is self-adjoint, has the nontrivial
solution dg/dj that approaches zero exponentially as
j→ ±`. Therefore, for the inhomogeneous equation(17) to
have a solution that does not diverge exponentially as
j→ ±`, its inhomogeneous termGn must satisfy the follow-
ing relation(solvability condition):

E
−`

` dg

dj
Gndj = 0, s20d

since the left-hand side of Eq.(17) satisfiese−`
` sdg/djd

3sLCfCnddj=0 for anyfCn that does not diverge exponen-
tially as j→ ±`. When the condition(20) is satisfied, the
solution of Eq.(17) is expressed as

fCn = rn
dg

dj
+ f̂Cn sn = 1,2, . . .d, s21d

wherern sn=1,2, . . .d is an arbitrary constant andf̂Cn is the
particular solution of Eq.(17).

At n=1, we easily find that, by puttinga1=b1=0, the
solvability condition(20) is identically satisfied and the so-
lution of Eq. (17) at n=1 that satisfies the boundary condi-
tion (12) is obtained:

fC1 = r1
dg

dj
− l1

]g

]v
, s22d

where]g/]v represents the derivative ofg with respect tov
for fixed j. It should be noted that, although the solution(22)
itself does not satisfy the mass balancee−`

` fdj=0, we will
see later[or after Eq.(48)] that this is automatically satisfied
by taking into account a far-field solution.

At n=2, the solvability condition(20) is

dP

dv
l1

2 + P = Sg0

2
− b2DM , s23d

whereg0=gs0d. P andM are defined by Eq.(9) and

M =E
−`

`

gdj, s24d

respectively. When the condition(23) is satisfied, we obtain
the solution of Eq.(17) at n=2 that does not diverge expo-
nentially asj→ ±`. However, it never satisfies the boundary
condition(12), since we easily find from Eq.(17) at n=2 that
f̂C2 has the following values asj→ ±`:

fC2uj→` = −
1

v
Fl1

2

2

dM

dv
+

M

4
+ sr1l1 + l2dg0 + a2

+ Sb2 −
g0

2
DjG , s25ad

fC2uj→−` = −
1

v
F−

l1
2

2

dM

dv
−

M

4
+ sr1l1 + l2dg0 + a2

+ Sb2 −
g0

2
DjG . s25bd

For both quantities to be zero, which are the boundary con-
dition (12), the terms proportional toj in Eqs. (25a) and
(25b) must be zero first. Thus,

b2 =
g0

2
. s26d

However, the terms which are independent ofj in Eqs.(25a)
and(25b) cannot be zero simultaneously, since the difference
betweenfC2uj→` and fC2uj→−` [or sl1

2dM /dv+M /2d/v] is
generally not zero. This situation continues to the higher or-
ders. The reason for such inappropriateness is that we did not
take into account the balance between the first and the sec-
ond terms on the left-hand side of Eq.(11). To achieve the
balance, we need to introduce a shrunk coordinate with re-
spect toj and seek a solution whose variation occurs slowly
in j. This solution will be called a far-field solution. By
accomplishing the connection with the core solution(15) and
the far-field solution, the solution of Eq.(11) that satisfies the
boundary condition(12) can be constructed. This procedure
will be made from the following subsections. In this subsec-
tion, therefore, we concentrate on obtaining the core solution
putting aside the boundary condition(12).
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Now return to the main analysis. Substituting Eq.(26)
into Eq. (23), we get

l1 = ± iÎ P

dP/dv
. s27d

This criterion was obtained first by Kadomtsev and Petviash-
vili [9] in the framework of the classical KP equation and
later by Kuznetsovet al. [10,11]. In the framework of the
GKP equation, Bridges[16] derived this criterion. However,
the real part ofl1 is zero so that the stability of the solitary
wave solution is not determined at this order. To know the
stability, we must proceed to the next order.

At n=3, the solvability condition(20) is

H− 2
dP

dv
l2 +

dM

dv
fa2 + sr1l1 + l2dg0gJl1 + S r1

2
g0 − b3DM

= 0, s28d

which is obtained by the use of Eq.(17) at n=1,2 andinte-
gration by parts. This condition will generally give the non-
zero real part ofl2. Thus, the solution is obtained up to the
orders that can determine the stability of the solitary wave
solution. The specific values ofa2 andb3, which are neces-
sary for determining the value ofl2, are given after accom-
plishing the connection between the core solution and the
far-field solution. In the next subsection, the far-field solution
is investigated.

B. Far-field solution

We seek a solution considering the balance between the
first and second terms on the left-hand side of Eq.(11). To
this end, in accordance with the introduction of«l1 and«2l2
in Eq. (14), we here introduce two shrunk coordinates with
respect toj:

X1 = «j, X2 = «2j. s29d

We then look for the solution of Eq.(11) whose appreciable
variation occurs in X1 and X2 of the order of unity
f]f /]X1=Osfd , ]f /]X2=Osfdg, in a power series of«:

fF = «2fF2sX1,X2d + «3fF3sX1,X2d + ¯, s30d

where the subscriptF is attached to discriminate the type of
solution(far-field solution). The series of Eq.(30) starts from
Os«2d in accordance with the core solution not being able to
satisfy the boundary condition asj→ ±` from this order
[see the statement below Eq.(26)].

Substituting Eqs.(14), (29), and (30) into Eq. (11), and
arranging the same-order terms in«, a series of equations for
fFn sn=2,3, . . .d is obtained:

LFfF2 = 0, s31d

LFfFn = Hn sn = 3,4, . . .d, s32d

whereLF is the linear operator defined by

LF = l1
]

]X1
− v

]2

]X1
2 −

1

2
, s33d

andHn sn=3,4, . . .d is the inhomogeneous term given by

H3 = S− l2
]

]X1
− l1

]

]X2
+ 2v

]2

]X1]X2
DfF2, s34d

¯ .

The homogeneous equation(31) has a solution

fF2 = q2 expskX1d + q̄2 expsk̄X1d, s35d

whereq2 and q̄2 are undetermined functions ofX2, and

k =
l1

2v
S1 +Î1 +

2v
ul1u2

D, k̄ =
l1

2v
S1 −Î1 +

2v
ul1u2

D s36d

are both pure imaginary constants.
Equation(32) is a linear inhomogeneous equation and its

homogeneous part has the nontrivial solutions expskX1d and

expsk̄X1d. For Eq. (32) to have a solution that does not di-
verge with respect toX1, therefore, its inhomogeneous term
must satisfy the following conditions:

UE
0

±`

Hn exps− kX1ddX1U , `,

UE
0

±`

Hn exps− k̄X1ddX1U , `. s37d

These conditions arise because the left-hand side of
Eq. (32) satisfies ue0

±` exps−kX1dsLFfFnddX1u,` and

ue0
±` exps−k̄X1dsLFfFnddX1u,` for any boundedfFn.
The conditions(37) at n=3 become

s2vk − l1d
dq2

dX2
− l2kq2 = 0, s2vk̄ − l1d

dq̄2

dX2
− l2k̄q̄2 = 0.

s38d

Solving these equations, we get

q2 = c2+ expS l2k

2vk − l1
X2D ,

q̄2 = c̄2+ expS l2k̄

2vk̄ − l1

X2D for X1,X2 . 0, s39ad

q2 = c2− expS l2k

2vk − l1
X2D ,

q̄2 = c̄2− expS l2k̄

2vk̄ − l1

X2D for X1,X2 , 0, s39bd

wherec2+, c̄2+, c2−, and c̄2− are undetermined constants. We
can proceed to the higher orders in a similar way.

C. Connection of the core solution and the far-field solution

Here we carry out the connection of the core solutionfC
and the far-field solutionfF. In the core region expressed by
fC, the ordering of the far-field solution is reshuffled. That
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is, the far-field solutionfFn is expanded in the power series
of X1 (or «j) andX2 (or «2j):

fFn = sfFnd0 + «jS ]fFn

]X1
D

0
+ «2F j2

2
S ]2fFn

]X1
2 D

0

+ jS ]fFn

]X2
D

0
G

+ ¯, s40d

where the quantities in the parentheses with subscript 0, or
s¯d0, are evaluated atX1=X2=0. With this reordering,

fF = «2sfF2d0 + «3sfF3d0 + «4sfF4d0 + ¯ + «3jS ]fF2

]X1
D

0

+ «4jS ]fF3

]X1
D

0
+ ¯ + «4F j2

2
S ]2fF2

]X1
2 D

0

+ jS ]fF2

]X2
D

0
G

+ ¯. s41d

Collecting the same orders of«, we obtain the reordered
form (say,fFn

* ) of fFn. For example, the new form(or fF3
* )

of fF at the order of«3 is given by sfF3d0+js]fF2/]X1d0.
After this reordering, we compare the forms of the two so-
lutions fCn andfFn

* at eachn and carry out their connection
from n=2. The connection is accomplished if the conditions

fCn , fFn
* asj → ± `, s42d

are satisfied with differences being smaller than any inverse
power ofj.

At the order of«2, sincefF2
* =sfF2d0, the connection is

accomplished if

fC2 , sfF2d0+ asj → `, s43ad

fC2 , sfF2d0− asj → − `, s43bd

where the quantities in the parentheses with subscript 0+ and
0− are evaluated asX1,X2→0+ and X1,X2→0−, respec-
tively. Then, the connection conditions(43a) and (43b) are,
from Eqs.(25a), (25b), (35), (39a), and(39b),

−
1

v
Fl1

2

2

dM

dv
+

M

4
+ sr1l1 + l2dg0 + a2G = c2+ + c̄2+,

s44ad

−
1

v
F−

l1
2

2

dM

dv
−

M

4
+ sr1l1 + l2dg0 + a2G = c2− + c̄2−.

s44bd

At the order of«3, sincefF3
* =sfF3d0+js]fF2/]X1d0, the

connection conditions are

fC3 , sfF3d0+ + jS ]fF2

]X1
D

0+
asj → `, s45ad

fC3 , sfF3d0− + jS ]fF2

]X1
D

0−
asj → − `. s45bd

They consist of two different kinds of terms, i.e., those inde-
pendent ofj and those proportional toj. The connection
conditions are obtained from each independently, that is, two

conditions from the terms independent ofj, and the other
two from those proportional toj. The latter two relations
contribute to the determination of the unknown constants at
this order, and they are given by

−
1

v
Hl1

v
Fl1

2

2

dM

dv
+

M

4
+ sr1l1 + l2dg0 + a2G −

r1

2
g0

−
l1

4

dM

dv
+ b3J = kc2+ + k̄c̄2+, s46ad

−
1

v
Hl1

v
F−

l1
2

2

dM

dv
−

M

4
+ sr1l1 + l2dg0 + a2G −

r1

2
g0

+
l1

4

dM

dv
+ b3J = kc2− + k̄c̄2−. s46bd

Moreover, from the boundary condition(12), we get, using
Eq. (35) and the fact that the sign of the exponents in Eqs.
(39a) and (39b) is the same as that ofl2,

c2+ = c̄2+ = 0 whenl2 . 0, s47ad

c2− = c̄2− = 0 whenl2 , 0. s47bd

The six undetermined constantsa2, b3, c2+, c̄2+, c2−, and
c̄2− are determined by the six equations(44a) and (44b);
(46a) and(46b); and(47a) or (47b). Solving these equations,
we get

a2 = −
l1

2

2

dM

dv
−

M

4
− sr1l1 + l2dg0, b3 =

r1

2
g0 +

l1

4

dM

dv
,

c2+ = c̄2+ = 0,

c2− = S1 +
2v

ul1u2D
−1/2F k

l1
Sl1

2dM

dv
+

M

2
D −

1

2

dM

dv
G ,

c̄2− = S1 +
2v

ul1u2D
−1/2F−

k̄

l1
Sl1

2dM

dv
+

M

2
D

+
1

2

dM

dv
G whenl2 . 0,

a2 =
l1

2

2

dM

dv
+

M

4
− sr1l1 + l2dg0, b3 =

r1

2
g0 −

l1

4

dM

dv
,

c2+ = S1 +
2v

ul1u2D
−1/2F−

k

l1
Sl1

2dM

dv
+

M

2
D +

1

2

dM

dv
G ,

c̄2+ = S1 +
2v

ul1u2D
−1/2F k̄

l1
Sl1

2dM

dv
+

M

2
D −

1

2

dM

dv
G , s48d

c2− = c̄2− = 0 whenl2 , 0.

Now one can check that the obtained solution satisfies the
mass balance up to the order of«, or e−`

` s«fC1+«2fF2ddj
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=0 using Eqs.(22), (35), (39a), (39b), and(48).
Substituting the above results fora2 andb3 into the solv-

ability condition (28), we obtainl2 as

l2 = 5±
PQ

8sdP/dvd2 if Q , 0,

no solution if Q . 0,

s49d

where

Q =
dsM2d

dv

d

dv
SlnU P

M
UD . s50d

Thus, whenQ,0, we have a solution of the eigenvalue
problem(11) and(12) whosel has the positive real part(or
l2.0). So the solitary wave solution is unstable to long-
wavelength transverse perturbations whenQ,0.

In contrast, whenQ.0, there is no solution of the eigen-
value problem(11) and (12). In this case any perturbation
modes are expected to be nonlocal. Since nonlocal perturba-
tions cannot be excited by the solitary wave solution which
is local, the solitary wave solution is stable to long-
wavelength transverse perturbations whenQ.0.

Now we can say that a sufficient condition for transverse
instability is

Q , 0. s51d

This criterion gives stability for the soliton of the classical
KP equation, which is consistent with the results of the pre-
vious studies[12–15].

IV. TRANSVERSE INSTABILITY OF SPECIFIC SOLITARY
WAVE SOLUTIONS

Let us apply the sufficient condition(51) for transverse
instability to typical solitary wave solutions. Three different
nonlinear functionsfsAd are considered. First,

fsAd =
p + 2

2
Ap+1, s52d

wherep represents

p =
m

n
. s53d

Here m and n are relatively prime,n is odd, andA1/n is
defined to take real values. The corresponding solitary wave
solution is

gsjd = FÎv sechSpÎvj

2
DG2/p

, s54d

where v is a positive real parameter. This solution is one-
dimensionally stable whenp,4 according to the one-
dimensional stability criterion(8). The sufficient condition
for the transverse instability is obtained by applying the in-
stability criterion(51), which indicates the transverse insta-
bility when

2 , p , 4. s55d

The stability region on ap−v plane is illustrated in Fig. 1(a).
Second, consider

fsAd = sp + 2dAp+1 + sp + 1dA2p+1, s56d

where p is given by Eq.(53). There are two families of
solitary wave solutions

gsjd = F v
Î1 + v coshspÎvjd + 1

G1/p

, s57d

which exists for arbitrary values ofm, and another solution

FIG. 1. Stability and instability regions on a parameter plane
sp,vd of the solitary wave solutions given by(a) Eq. (54), (b) Eq.
(57), (c) Eq. (58), and(d) Eq. (60). FIG. 2. Time dependence of the maximum amplitudeuAu on y

=0 for the solution of the initial-value problem of the GKP equation
(1) whose nonlinear function is given by Eq.(52) at (a) p=1, (b)
p=3. The initial condition is Eq.(61) with «=p /20 whose solitary
wave solutiong is given by Eq.(54) at (a) p=1 andv=1, (b) p
=3 andv=1.
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gsjd = F v

− Î1 + v coshspÎvjd + 1
G1/p

, s58d

which exists only whenm is odd. By a trivial scaling trans-
formation, these two solutions cover all the solitary wave
solutions whose nonlinear function is given by any linear
combination ofAp+1 and A2p+1 with positive coefficient of
A2p+1. The stability of the solutions(57) and(58) depend not
only on p but also onv. The stability regions on the param-
eter plane(p−v plane) are shown in Figs. 1(b) and 1(c). One
finds that the transversely unstable region adjoins the one-
dimensional instability region on the side of the smallerp for
both cases.

Third, consider

fsAd = sp + 2dAp+1 − sp + 1dA2p+1. s59d

The corresponding solitary wave solution is

gsjd = F v
Î1 − v coshspÎvjd + 1

G1/p

, s60d

wherev is less than 1s0,v,1d. By a trivial scaling trans-
formation, this solution covers all the solitary wave solutions
whose nonlinear function is given by any linear combination
of Ap+1 and A2p+1 with negative coefficient ofA2p+1. The
stability region on the parameter plane(p−v plane) is shown
in Fig. 1(d). In this case also, the transversely unstable region
exists on the side of the lower-order nonlinearities(or the

side of the smallerp) of the one-dimensionally unstable re-
gion.

Finally, we arrange the results forp=1, whose solitary
wave solutions are solitons. There are four kinds of solitons:
Eqs. (54), (57), (58), and (60) at p=1. Their transverse sta-
bilities are shown in Figs. 1(a)–1(d) at p=1. We see that the
solitons(54), (57), and(60) are stable while the soliton(58)
is transversely unstable. This is the first study that has re-
vealed the existence of transversely unstable soliton propa-
gating in a medium with negative dispersion. The nonlinear
function of this unstable soliton is given by Eq.(56) at p
=1. The corresponding soliton solutions are Eqs.(57) and
(58) at p=1: one is stable and one is unstable.

V. NUMERICAL EXAMPLES

In this section we solve the GKP equation(1) numerically.
The purpose is twofold. First, to show examples of trans-
verse instability, and second, to investigate the transverse
stability to perturbations of finite wavelength, or finite values
of «.

To these ends, we solve the GKP equation(1) under the
following initial condition:

Asx,y,0d = gsx + 0.1 cos«yd, s61d

where« is a given real constant. This initial condition(61)
represents the solitary wave solution whose peak is distorted
periodically with respect toy by the amplitude 0.1 and wave
number«. The usual finite-difference scheme is used for the
numerical calculation. No disturbancessA=0d and the radia-
tion condition[17] are applied far upstream and downstream,
respectively, of the finite calculation region moving at speed
v in the positivex direction, and the condition of symmetry
is applied aty=0 andp /«.

First, take the nonlinear functionfsAd given by Eq.(52)
and the solitary wave solutiong given by Eq.(54), respec-
tively. Figures 2(a) and 2(b) show the time dependence of the
maximum amplitudeuAu on y=0 when«=p /20. We see that

FIG. 3. The profiles ofA at t=40 and 80 of the solution of the
initial-value problem of the GKP equation(1) whose nonlinear
function is given by Eq.(52) at p=3. The initial condition is Eq.
(61) with «=p /20 whose solitary wave solutiong is given by Eq.
(54) at p=3 andv=1.

FIG. 4. Plots of stability(s) and instability(3) on a parameter
plane s« ,vd of the solitary wave solution given by Eq.(54) at p
=3 to transverse perturbations of wave number«.
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the amplitude grows as time elapses for the case ofp=3.
This is in accordance with the analytical result(55). Figure 3
shows the whole view of the wave(or the profile ofA) for
p=3, and the distortion of the solitary wave can be clearly
seen.

The stability and instability, which are judged by the time
dependence of the maximum amplitudeuAu on y=0, are
shown in Fig. 4 forp=3 (the case ofp=1 is always stable).
According to the figure, the solitary wave is unstable as« →0 (the left side of Fig. 4) independent ofv, which agrees

with the analytical result(55) for small «. However, as«
increases, the solitary wave solution shows stable behavior
from a certain critical value of«, or «.«csvd. That is, there
is a short-wavelength cutoff to the transverse instability.

Next, takefsAd given by Eq.(56) at p=1 andg given by
the soliton solution(58) at p=1. Figure 5 shows the time
dependence of the maximum amplitudeuAu on y=0 when«
=p /20. The figure indicates that the soliton is unstable, and
agrees with the analytical result that the soliton solution(58)
at p=1 is transversely unstable[see Fig. 1(c)]. Figure 6
shows the whole view of the wave(or the profile ofA), and
the distortion of the soliton can be clearly seen. The trans-
verse stability for various values of« is arranged in Fig. 7. In
this case also, there is a short-wavelength cutoff to the trans-
verse instability. This tendency is also confirmed in the other
solitary wave solutions(57) and (60) that are transversely
unstable for sufficiently small«.

From the above numerical examples, existence of trans-
versely unstable solitary waves including the soliton[or the
solution(58) at p=1] has been strongly confirmed. We have
also found that there is a short-wavelength cutoff to the
transverse instability.

VI. CONCLUDING REMARKS

In the present study, the method of the stability analysis
based on the GKP equation has been given fully in detail.
For any solitary wave solutions investigated, there exists a
region of transverse instability at the lower-order nonlineari-
ties of the parameter plane than that of the one-dimensional
instability. This result indicates the importance of checking
the transverse stability of one-dimensionally stable solitary
waves in fluids like in the water and stratified fluids.

FIG. 5. Time dependence of the maximum amplitudeuAu on y
=0 for the solution of the initial-value problem of the GKP equation
(1) whose nonlinear function is given by Eq.(56) at p=1. The
initial condition is Eq.(61) with «=p /20 whose solitary wave so-
lution (or the soliton solution) g is given by Eq.(58) at p=1 and
v=0.5.

FIG. 6. The profiles ofA at t=20 and 40 of the solution of the
initial-value problem of the GKP equation(1) whose nonlinear
function is given by Eq.(56) at p=1. The initial condition is Eq.
(61) with «=p /20 whose solitary wave solution(or the soliton
solution) g is given by Eq.(58) at p=1 andv=0.5.

FIG. 7. Plots of stability(s) and instability(3) on a parameter
plane s« ,vd of the soliton solution given by Eq.(58) at p=1 to
transverse perturbations of wave number«.
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Although the one-dimensional stability of solitary waves
in fluids was investigated by several authors[18–20], the
transverse stability was studied only by Bridges[21]. He
treated the water waves. He derived the linear instability cri-
terion to transverse perturbations of long wavelength, or the
small wave number, and found the neutral stability at the
leading order of the small wave number. To know the stabil-
ity, however, the next order effect must be taken into ac-
count. According to our present study based on the GKP

equation, the transverse instability appears at this next order.
Therefore, it is very interesting to make linear stability
analysis on the basis of the original governing equations of
fluids, and investigate the transverse stability of one-
dimensionally stable solitary waves in fluids. In fact, the au-
thors made the analysis for the water wave recently and
found the existence of transversely unstable solitary waves.
The paper on this finding will be published soon[22].
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